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1 Pure and Mixed Strategies

Recall that a normal-form game is specified by (1) each player’s action space, and (2) the payoffs to
the players at each joint action profile. In this lecture, we will start to introduce the strategy of a
player, which specifies how the player chooses her action.

Let’s use the Rock-Paper-Scissors game as our guiding example. If this game is played only a few
times, luck will determine the outcome and no mathematical analysis seems plausible.1 This suggests
us to consider the setting of repeated games, where the same game is played for many times, and the
mathematical analysis focuses on the average payoffs of the players.

In the repeated games setting, a player’s strategy may stick to one action. This is called pure
strategy. Pure strategy is used if one action is always better than the others. For instance, in the
Prisoner Dilemma game of last lecture, “testify” is always the better option for Alice no matter what
Bob chooses, so rationally she should adopt the pure strategy of “testify”.

However, in most other games, including even the simple Rock-Paper-Scissors game, it is clearly
unwise for a player to limit herself solely to pure strategies. As conventional wisdom suggests, she
should introduce randomness into her choices of actions. This motivates the concept of mixed strategy.

Definition 1.1. Let Ai denote the action space of player i, where |Ai| is finite. A mixed strategy
of player i is a probability distribution over Ai. A pure strategy is a special case of mixed strategy,
where one of the actions in Ai is chosen with probability 1.

Following standard notation in probability theory, we use ∆(Ai) to denote the set of mixed strate-
gies of player i:

∆(Ai) :=

 xi ∈ R|Ai|

∣∣∣∣∣ ∑
j∈Ai

xij = 1 and ∀j ∈ Ai, xij ≥ 0

 .

We use xi ∈ ∆(Ai) to denote a mixed strategy of player i. A mixed strategy is a column vector, but
writing a column vector within text is space-wasting. Thus, we abuse notation slightly by writing
a mixed strategy within text as a row vector, say xi = (1

2 ,
1
3 ,

1
6), but we actually mean the column

vector xi =


1
2
1
3
1
6

. Also, we use

x = (x1,x2, . . . ,xn) ∈ ∆(A1)×∆(A2)× . . .×∆(An)

to denote a joint mixed strategy profile in an n-player game.

When we want to focus from the perspective of a particular player i, we will write x as (xi,x−i),
where xi is the mixed strategy of player i, and x−i collects the mixed strategies of the other players.
If player i changes her mixed strategy from xi to x′i while the other players remain the same, the new
joint mixed strategy profile is written as (x′i,x−i).

1However, there may be other analyses like psychological or behavioral ones. For instance, some children always pick
Paper in their first game.
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Recall that in a normal-form game, the payoff function of player i is denoted by ui : A → R.
Be reminded that the domain of ui is A, the space of joint action profiles. When the players adopt
mixed strategies in a joint mixed strategy profile x, the payoff function ui is extended naturally via
expectation, where the underlying probability distribution is that each player ` chooses independently
her action a` following her mixed strategy x`:

ui(x) := E(a1,a2,...,an)∼(x1,x2,...,xn) [ui(a1, a2, . . . , an)] .

Example 1.2. In the Rock-Paper-Scissors game, suppose Alice (player 1) uses mixed strategy
x1 = (1

3 ,
2
3 , 0), i.e., she chooses Rock with probability 1

3 , Paper with probability 2
3 , and Scissors

with probability 0. Suppose Bob (player 2) uses the mixed strategy x2 = ( 8
15 ,

2
15 ,

1
3).

The joint mixed strategy profile x = (x1,x2) corresponds to the probability distribution where
Alice chooses her action randomly following x1, Bob chooses his action randomly following x2,
and their random choices are independent. For instance, the joint action profile (R,P ) is chosen
with probability 1

3 ×
2
15 = 2

45 . The probabilities of all joint action profiles are given below:

Bob’s action

R P S

A
li

ce
’s

ac
ti

on

R 8
45

2
45

1
9

P 16
45

4
45

2
9

S 0 0 0

Recall that the payoff functions ui are extended to mixed strategies via expectation. Using the
above probabilities, we compute u1(x) as below:

u1(x) =
8

45
× 0 +

2

45
× (−1) +

1

9
× 1

+
16

45
× 1 +

4

45
× 0 +

2

9
× (−1) =

1

5
.

Analogously, we can compute u2(x) = −1
5 .

Recall that for two-player game, the payoffs to the two players can be specified by two matrices
A,B. When the mixed strategies of the two players are x1,x2 respectively, it is not hard to see
that the expected payoffs can be written compactly using linear algebra: u1(x) = (x1)TAx2 and
u2(x) = (x1)TBx2, where (x1)T is the transpose of the column vector x1. For instance, in the
example above, u1(x) can be computed more conveniently as below:

u1(x) =
[

1
3

2
3 0

]
·

 0 −1 1

1 0 −1

−1 1 0

 ·


8
15
2
15
1
3

 =
[

1
3

2
3 0

]
·


1
5
1
5

−2
5

 =
1

5
.

2 Best Response

Many economics models rely on the assumption is rational self-interest: each individual aims to
optimize her own benefit, without caring about the benefits of the others.2 In other words, each
individual is only interested in making best response to the other individuals’ choices.

2One might argue that numerous real-world scenarios refute this assumption. This is certainly true. Nevertheless, the
art of effective modeling lies in achieving a delicate balance between tractability and applicability. While acknowledging
that the assumptions underpinning a simplified model may not perfectly reflect the nuances of a specific application,
their sufficient proximity to reality permits rigorous mathematical analysis, and consequently, has potential for extracting
valuable insights. This echoes the well-known adage of statistician George Box, who famously remarked, “All models
are wrong, some are useful.” This underscores that the inherent limitations of simplified models do not negate their
potential to contribute to our understanding of complex phenomena.
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Example 2.1. We revisit Example 1.2. We will determine whether the two players are making
best responses.

Suppose Alice’s mixed strategy is (a, b, c) where a, b, c are non-negative numbers which sum to
1, while Bob’s mixed strategy is x2 = ( 8

15 ,
2
15 ,

1
3). The expected payoff of Alice is

[
a b c

]
·

 0 −1 1

1 0 −1

−1 1 0

 ·


8
15
2
15
1
3

 =
[
a b c

]
·


1
5
1
5

−2
5

 =
a + b− 2c

5
.

To maximize a+b−2c
5 , Alice can choose any a, b ≥ 0 such that a + b = 1, and c = 0. x1 = (1

3 ,
2
3 , 0)

fulfills this, so x1 is a best response.

Next, suppose Bob’s mixed strategy is (a, b, c) where a, b, c are non-negative numbers which
sum to 1, while Alice’s mixed strategy is x1 = (1

3 ,
2
3 , 0). The expected payoff of Bob is

[
1
3

2
3 0

]
·

 0 1 −1

−1 0 1

1 −1 0

 ·
ab
c

 =
[
−2

3
1
3

1
3

]
·

ab
c

 =
b + c− 2a

3
.

To maximize b+c−2a
3 , Bob can choose any b, c ≥ 0 such that b+ c = 1, and a = 0. In other words,

player 2 can choose another mixed strategy, say (0, 1
2 ,

1
2), to get an expected payoff of 1

3 , which is
higher than −1

5 he got previously. Thus, x2 is not a best response.

3 Nash Equilibrium — “Mutual Best Response”

Economists are interested in analyzing the outcomes of economic systems under the rational self-
interest assumption. In some models, the focus lies on identifying stable outcome or equilibrium, where
no individual has incentive to deviate from their current decision. In other words, every individual
makes best response to the choices of the others. This underpins the definition of Nash equilibrium,
formally stated below.

Definition 3.1. A joint mixed strategy profile x = (x1,x2, . . . ,xn) of a normal-form n-player
game is a Nash equilibrium if for every player i, the mixed strategy xi maximizes her own expected
payoff, assuming all other players stick with their mixed strategies in x−i; precisely,

xi ∈ arg max
x′
i∈∆(Ai)

ui(x
′
i,x−i) .

If every strategy in a Nash equilibrium is a pure strategy, it is called a pure Nash equilibrium.

In Example 2.1, Alice makes best response but Bob does not, so (x1,x2) in the example is not
a Nash equilibrium. For a joint mixed strategy profile to be a Nash equilibrium, every player must
make best response. This is a rather strong requirement, and it is unclear whether a Nash equilibrium
exists or not. One of the most celebrating results in game theory is that Nash equilibrium exists under
very general conditions. We will discuss the proof this result in the next lecture.

After defining Nash equilibrium, the two immediate questions are

1. How can we determine whether a joint mixed strategy profile is Nash equilibrium or not?

2. How can we compute a Nash equilibrium of any given game?
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It turns out question 2 is not easy to answer. Indeed, we will devote a significant portion of this course
to look into some algorithms for computing Nash equilibrium. Question 1 is much easier to answer.
The following proposition provides a simple method to check whether a profile is a Nash equilibrium:
at a Nash equilibrium, every player will choose random actions only among those that yield her the
maximum expected payoff.

Proposition 3.2. Let x = (x1,x2, . . . ,xn) be a joint mixed strategy profile. For each action j
of player i, let vij(x−i) := ui(eij ,x−i), where eij is the pure strategy of player i choosing action
j with probability 1. Let v̂i(x−i) := maxj∈Ai vij(x−i).

The profile x is a Nash equilibrium if and only if for every player i and every action j ∈ Ai

where xij > 0, we have vij(x−i) = v̂i(x−i). In the rest of this course, this is called the best
response condition (BR condition) of player i.

Proof: Since the underlying probability distribution is each player ` choosing her action randomly
and independently following x`, we have

ui(xi,x−i) =
∑
j∈Ai

xij · ui(eij ,x−i) =
∑
j∈Ai

xij · vij(x−i) ,

whereas
∑

j∈Ai
xij = 1. By the definition of v̂i(x−i), we have∑

j∈Ai

xij · vij(x−i) ≤
∑
j∈Ai

xij · v̂i(x−i) = v̂i(x−i) ,

so the maximum possible value of ui(xi,x−i), while keeping x−i fixed, is v̂i(x−i). If xij > 0 implies
vij(x−i) = v̂i(x−i), then

ui(xi,x−i) =
∑

j:xij>0

xij · v̂i(x−i) = v̂i(x−i) ,

i.e., xi is a mixed strategy of player i that achieves the maximum possible payoff.

Otherwise, there exists an action k ∈ Ai such that xik > 0 but vik(x−i) < v̂i(x−i). Then we have
xik · vik(x−i) < xik · v̂i(x−i), and hence

ui(xi,x−i) = xik · vik(x−i) +
∑

j∈Ai\{k}

xij · vij(x−i)

< xik · v̂i(x−i) +
∑

j∈Ai\{k}

xij · v̂i(x−i) = v̂i(x−i) ,

i.e., xi falls short from achieving the maximum possible payoff.

Example 3.3. Your instinct should have already told you that a Nash equilibrium of the two-
player Rock-Paper-Scissors game is each player choosing the uniform distribution: x = (x1,x2) =((

1
3 ,

1
3 ,

1
3

)
,
(

1
3 ,

1
3 ,

1
3

))
. Let’s confirm this instinct formally. When x2 is fixed, let e1R denote the

pure strategy of player i choosing Rock, then

u1(e1R,x2) = x2R · 0 + x2P · (−1) + x2S · 1 =
1

3
· 0 +

1

3
· (−1) +

1

3
· 1 = 0.

Analogously, we compute u(e1P,x2) = u(e1S,x2) = 0. In the notations of Proposition 3.2,
v̂1(x−1) = 0. It is easy to check that the BR condition of player 1 is satisfied: for each action j of
player 1, x1j > 0 implies u(e1j ,x2) = v̂1(x−1) = 0. Due to the symmetry among the two players,
the BR condition of player 2 is also satisfied. Thus, x is a Nash equilibrium.
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Test Your Intuition: Suppose we twist the game as below: if one player chooses Paper and the
other chooses Rock, the winner gets $2 from her opponent, instead of $1. Will the players choose
Paper more often (i.e., with probability more than 1

3) at the Nash equilibrium of the twisted
game?

Example 3.4. Consider the two-player game represented by the following bimatrix:(5, 4) (0, 7) (2,−1)

(4, 8) (1, 6) (6, 10)

(3, 6) (3, 3) (4, 3)

 .

As before, we separate the bimatrix into A =

5 0 2

4 1 6

3 3 4

 and B =

4 7 −1

8 6 10

6 3 3

.

First, we check whether x =
((

0, 2
3 ,

1
3

)
,
(
0, 1

2 ,
1
2

))
is a Nash equilibrium. To calculate v1j(x−1)

for all actions j, we compute the following matrix-vector product:

Ax2 =

5 0 2

4 1 6

3 3 4

 ·
0

1
2
1
2

 =

1
7
2
7
2

 .

Thus, v̂1(x−1) = 7
2 . Observe that x12, x13 > 0, and the corresponding v12(x−1), v13(x−1) both

equal to v̂1(x−1). The BR condition of player 1 is satisfied.

Next, to calculate v2j(x−2) for all actions j, we compute the following matrix-vector product:

BTx1 =

 4 8 6

7 6 3

−1 10 3

 ·
0

2
3
1
3

 =


22
3

5
23
3

 .

Thus, v̂2(x−2) = 23
3 . The BR condition of player 2 is not satisfied, since x22 = 1

2 > 0 but
v22(x−2) = 5 < v̂2(x−2). Thus, x is not a Nash equilibrium.

We check whether y =
((

1
2 , 0,

1
2

)
,
(

3
5 ,

2
5 , 0
))

is a Nash equilibrium. As before, we compute

Ay2 =

 3
14
5

3

 and BTy1 =

5

5

1

. Observe the followings, which confirms y is a Nash equilibrium:

• v̂1(y−1) = 3, y11, y13 > 0 and the corresponding v11(y−1), v13(y−1) both equal to v̂1(y−1),
so the BR condition of player 1 is satisfied.

• v̂2(y−2) = 5, y21, y22 > 0 and the corresponding v21(y−2), v22(y−2) both equal to v̂2(y−2),
so the BR condition of player 2 is satisfied too.

Test Your Intuition: Can you find out another Nash equilibrium of the game? What are the
differences of the payoffs between the two Nash equilibria?

As the ”Test Your Intuition” of the previous example indicates, a game can be more than one Nash
equilibria, and their payoffs can be quite different. Indeed, a n-player game can have Θ(2n) Nash
equilibria with vastly different payoffs, as the next example demonstrates.
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Example 3.5. In an n-player game, each player can choose an action of either 0 or 1. All players
receive the same payoff, determined as follows. Let s denote the sum of their chosen numbers. If
s is odd, each player receives $0. Otherwise, each player receives $s.

We claim that any joint pure strategy profile at which there are even number of players choosing
1 is a pure Nash equilibrium. To see why, if a player sticks to her pure strategy, she receives $s.
If she switches, she receives $0. As s ≥ 0, her pure strategy is the unique best response of her.

By a simple counting, there are 2n−1 such joint pure strategy profiles. The worst pure Nash
equilibrium is when all players choose 0, at which each player receives $0. The best pure Nash
equilibrium is the maximum possible even number of players choose 1, at which each player
receives $n or $(n− 1), depending on the parity of n.

4 Algorithms for Computing Nash Equilibrium of Some Two-Player
Games

As we shall see later in this course, computing Nash equilibrium, even restricted to two-player games,
is not simple. Nevertheless, computing pure Nash equilibrium (if exists) of any two-player game, and
computing Nash equilibrium of 2 × n games (one player has two actions, and the other has n ≥ 2
actions), are relatively simpler.

4.1 Algorithm for Computing Pure Nash Equilibria

Given a bimatrix game (A,B), suppose player 1’s pure strategy of choosing action j and player 2’s
pure strategy of choosing action k form a pure Nash equilibrium. What does this imply?

• First, among the entries in the k-th column of A, the j-th entry Ajk attains maximum.

• Second, among the entries in the j-th row of B, the k-th entry Bjk attains maximum.

This gives us a simple algorithm for computing all pure Nash equilibria of the game. We give the
pseudocode below, and the precise description is given in Algorithm 1.

1. For each column r of A, circle every Ajr which satisfies Ajr = maxq∈A1 Aqr.

2. For each row q of B, circle every Bqk which satisfies Bqk = maxr∈A2 Bqr.

3. For any (j, k) such that both Ajk and Bjk are circled, player 1’s pure strategy of choosing action
j and player 2’s pure strategy of choosing action k form a pure Nash equilibrium.

Example 4.1. Consider the following bimatrix game, for which we want to compute all its pure
Nash equilibria. (5, 4) (3, 7) (−10,−1) (−2, 7)

(4, 8) (1, 6) (6, 10) (−4, 8)

(9, 6) (3, 6) (4, 3) (−7, 6)

 .

The result after running step 1 of the algorithm is (5, 4) ( 3 , 7) (−10,−1) ( -2 , 7)

(4, 8) (1, 6) ( 6 , 10) (−4, 8)

( 9 , 6) ( 3 , 6) (4, 3) (−7, 6)

 .
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The result after running step 2 of the algorithm is (5, 4) ( 3 , 7 ) (−10,−1) ( -2 , 7 )

(4, 8) (1, 6) ( 6 , 10 ) (−4, 8)

( 9 , 6 ) ( 3 , 6 ) (4, 3) (−7, 6 )

 .

This computes the five pure Nash equilibria of the bimatrix game, namely

• ( (1, 0, 0) , (0, 1, 0, 0) )

• ( (1, 0, 0) , (0, 0, 0, 1) )

• ( (0, 1, 0) , (0, 0, 1, 0) )

• ( (0, 0, 1) , (1, 0, 0, 0) )

• ( (0, 0, 1) , (0, 1, 0, 0) )

Algorithm 1 Algorithm for Computing Pure Nash Equilibrium in Two-Player Game

1: for k ∈ A2 do . Begin of Step 1
2: z ← maxj′∈A1 Aj′k

3: for j ∈ A1 do
4: if Ajk = z then
5: Circle Ajk

6: end if
7: end for
8: end for
9:

10: for j ∈ A1 do . Begin of Step 2
11: z ← maxk′∈A2 Bjk′

12: for k ∈ A2 do
13: if Bjk = z then
14: Circle Bjk

15: end if
16: end for
17: end for
18:

19: return { (e1j , e2k) | (j, k) where both Ajk, Bjk are circled } . Step 3

4.2 Algorithm for Computing Nash Equilibria of 2× n Games

Given a bimatrix 2 × n game (A,B), let (x1,x2) denote a Nash equilibrium. Let supp(xi) denote
the number of entries in xi with non-zero probabilities. Using the algorithm in Section 4.1, we can
compute all pure Nash equilibria, i.e., Nash equilibrium with supp(x1) = supp(x2) = 1. Next, we
present an algorithm that computes all Nash equilibria where supp(x1) = supp(x2) = 2. You will find
later in this course that for almost every 2×n game, all its Nash equilibria (x1,x2) must satisfy either
supp(x1) = supp(x2) = 1 or supp(x1) = supp(x2) = 2.

Suppose x1 = (p, 1−p) for some 0 < p < 1. For each action k of player 2, let v2k(p) := u2(x1, e2k) =
pB1k + (1− p)B2k, which is an affine function of p. By Proposition 3.2, for any p, x2k can be non-zero
only when v2k(p) = maxr∈A2 v2r(p). Conceptually, the algorithm proceeds by drawing a plot of v2k(p)
for all k, which helps identifying the actions that player 2 might choose for different values of p. We
present the pseudocode of the algorithm below:
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1. Plot v2k(p) for each k ∈ A2 over the interval 0 ≤ p ≤ 1. Each plot of v2k(p) is a line segment.

2. Identify the upper envelope in the plot, which is the curve of the function v̂2(p) := maxk∈A2 v2k(p).

3. Identify each point on the upper envelope which is an intersection of two line segments plotted
in Step 1. Suppose the two line segments correspond to k1, k2 ∈ A2.

(a) Compute the value of p at the intersection, which is the solution of

pB1k1 + (1− p)B2k1 = pB1k2 + (1− p)B2k2 .

(b) Compute q such that qA1k1 + (1− q)A1k2 = qA2k1 + (1− q)A2k2 .

(c) If 0 ≤ q ≤ 1, then
((p, 1− p) , q · e2k1 + (1− q) · e2k2)

is a Nash equilibrium.

Example 4.2. Consider the following bimatrix game.[
(0, 1) (6, 12) (8, 5) (2, 10)

(6, 11) (4, 0) (3, 10) (9, 6)

]
.

We find out all pure Nash equilibria using Algorithm 1:[
(0, 1) ( 6 , 12 ) ( 8 , 5) (2, 10)

( 6 , 11 ) (4, 0) (3, 10) ( 9 , 6)

]
.

The two pure Nash equilibria are ((0, 1), (1, 0, 0, 0)) and ((1, 0), (0, 1, 0, 0)).

Next, we use the algorithm above to find out some other Nash equilibria. In Step 1, we plot
the line segments; see Figure 1 (left). In Step 2, we identify the upper envelope, which is the red
curve in Figure 1 (right). In the same figure, we also mark the three points on the upper envelope
which are intersections of two line segments, as instructed in Step 3.

• The first point is the intersection of v21(p) and v23(p). To find out the value of p at the
intersection, we solve p + 11(1 − p) = 5p + 10(1 − p), so p = 1

5 . To compute q, we solve
8(1− q) = 6q + 3(1− q), so q = 5

11 . This gives us a Nash equilibrium
(
(1

5 ,
4
5), ( 5

11 , 0,
6
11 , 0)

)
.

• The second point is the intersection of v23(p) and v24(p). To find out the value of p at
the intersection, we solve 5p + 10(1 − p) = 10p + 6(1 − p), so p = 4

9 . To compute q, we
solve 8q + 2(1 − q) = 3q + 9(1 − q), so q = 7

12 . This gives us another Nash equilibrium(
(4

9 ,
5
9), (0, 0, 7

12 ,
5
12)
)
.

• The third point is the intersection of v22(p) and v24(p). To find out the value of p at the
intersection, we solve 12p = 10p+6(1−p), so p = 3

4 . To compute q, we solve 6q+2(1− q) =
4q + 9(1− q), so q = 7

9 . This gives us the final Nash equilibrium
(
(3

4 ,
1
4), (0, 7

9 , 0,
2
9)
)
.

5 Solution Concept

Nash equilibrium is a natural and well-motivated solution concept in economics and game theory.
Informally speaking, a solution concept provides a benchmark on how the outcome of a game/market
should be.3 Once a solution concept is proposed, we always ask the following questions:

3In the rest of this course, we refer to games and markets collectively as economies.
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Figure 1: Plots for Example 4.2.

• existence: Does the solution exist for all economies, or less so, for a broad subclass of economies?

• uniqueness: Is there only one solution? Or is it possible to have many solutions?

• computation: How to efficiently compute a solution by using a computer?

• within-the-economy computation: In a realistic economy, players/agents typically do not
possess the full information of the economy. This is in contrast with “computation” above,
which assumes all economy information is part of the input to the computer. In non-full-
information settings, how can the solution be achieved by the collective (distributed) behaviors
of the players/agents?

• efficiency and other measures of qualities: As we have seen in Example 3.5, a game can
have exponentially many Nash equilibria with vastly different payoffs. In general economies, is
every solution efficient (in terms of yielding high overall payoffs)? In some economies, it also
makes sense to ask if the solutions are fair.

In the rest of this courses, we will address the five types of questions in various economies.

6 Nash Equilibrium with Irrational Number Probabilities

In the examples above, the probabilities at a Nash equilibrium are rational numbers. One may wonder
if the payoffs of a game are rational numbers, will it always possess a Nash equilibrium with rational
number probabilities? It turns out that the answer is yes for two-player games, but not always so for
games with three or more players. John Nash presented the first counterexample in his seminal paper
about existence of Nash equilibrium. [1] We give another example below.

Example 6.1. In a three-player game, each player can choose an action of either 0 or 1. The
three players sit in a circle. The payoffs are determined as follows; note the rotational symmetry
among the three players.

• If the three players choose the same action, all players receive $0;

• If exactly one player chooses action 1, this player receives $1, the players on her right/left
receive $3 / $0 respectively;

• If exactly one player chooses action 0, this player receives $1, and the players on her right/left
receive $1 / $0 respectively.
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We claim that there is a unique Nash equilibrium x, which occurs when each player chooses 0
with probability 1/

√
2. First, we verify that this is indeed a Nash equilibrium. Assume players 2

and 3 sit respectively on the right and left of player 1. Then

u1(e10,x−1) =

(
1√
2

)2

· 0 +
1√
2
·
(

1− 1√
2

)
· 3 +

(
1− 1√

2

)
· 1√

2
· 0 +

(
1− 1√

2

)2

· 1 =
1√
2

u1(e11,x−1) =

(
1√
2

)2

· 1 +
1√
2
·
(

1− 1√
2

)
· 0 +

(
1− 1√

2

)
· 1√

2
· 1 +

(
1− 1√

2

)2

· 0 =
1√
2

The BR condition of player 1 is satisfied. Due to the rotational symmetry, the BR conditions of
the other two players are also satisfied. This verifies that x is a Nash equilibrium.

Next, we rule out the possibility of another Nash equilibrium. This is not hard but will require
a few steps. We give an overview below, but leave the details to you as an exercise.

• Case 1: some player adopts a pure strategy at the Nash equilibrium.

Without loss of generality, we assume this player is player 1.

– If player 1 chooses action 0, then the Nash equilibrium has to be pure, at which player
2 chooses action 1 and player 3 chooses action 0. Player 1 receives $0, but she can
switch to action 1 to receive a higher payoff of $1, a contradiction.

– If player 1 chooses action 1, then the Nash equilibrium has to be pure, at which player
2 chooses action 0 and player 3 chooses action 1. Player 1 receives $0, but she can
switch to action 0 to receive a higher payoff of $3, a contradiction.

• Case 2: all players use non-pure strategies at the Nash equilibrium.

Let players 1, 2 and 3 choose action 0 with probability p, q and r respectively, where
0 < p, q, r < 1. Due to the BR condition of each player, we have ui(ei0,x−i) = ui(ei1,x−i)
for i = 1, 2, 3, so the following equalities hold: 1 + 2p− 2q − 2pq = 0, 1 + 2q − 2r − 2qr = 0
and 1 + 2r − 2p − 2rp = 0. It is not hard to deduce that this system of equations has a
unique solution of p = q = r = 1√

2
.
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