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1 Existence of Nash Equilibrium

Nash equilibrium was named after the Abel and Nobel laureateE] John Nash. However, the notion
was not first proposed by him — French philosopher and mathematician Antoine Augustin Cournot
applied the solution concept to analyzing competition between production firms in 1838, 90 years
before Nash was born. So, why the naming? It is because Nash addressed the most fundamental
question of the solution concept — if Nash equilibrium does not exist, it is useless no matter how
naturally motivated it is. Nash proved the following theorem in his 1951 seminal paper, published in
the prestigious mathematics journal, the Annals of Mathematics. [2]

Theorem 1.1. A finite normal-form game is a normal-form game with finitely many players, and
each player has finitely many actions. Every such game admits at least one Nash equilibrium.

This lecture is dedicated to the proof of the above theorem. The main mathematical tool is fixed-
point theorems, which provide sufficient conditions of a function (and its generalization) to guarantee
the existence of a fixed point. Fixed-point theorems have been powerful tools for demonstrating the
existence of many solution concepts in economics.

Why are fixed points related to Nash equilibria? In a game, suppose each player has a unique best
response to any joint mixed strategy profile of the other playersE] For any joint mixed strategy profile
x = (x1,X2,...,Xp), let br;(x_;) denote the unique best response of player i. Consider the function

f(x1,%x2,...,%,) := (bri(x_1), bra(x—2), ...,bry(x_p) ) . (1)

Observe that any fixed point of f is a Nash equilibrium by definition. In other words, proving that
the game has a Nash equilibrium is equivalent to proving that the above function f has a fixed point.

2 Fixed-Point Theorems
2.1 Brouwer’s Fixed-Point Theorem

We will present two fixed-point theorems. They apply to quite general topological spaces, but to keep
our exposition simple, we focus on their versions on finite dimensional real spaces R%, which will be
sufficient for the game and market applications in this course. The first theorem is due to Brouwer.
While we will need a more general theorem for Nash’s proof, Brouwer’s theorem is a good starting
point to appreciate the beauty of this kind of theorems.

Definition 2.1. Let f : X — X be a function. A fixed point of f is a point € X such that
flz) ==

Theorem 2.2. [Brouwer’s Fixed-Point Theorem] Let X be a compact and convex set in R?.
Suppose f: X — X is a continuous function. Then f admits at least one fixed point.

land the protagonist of the Oscar-winning movie A Beautiful Mind
2As we have seen in the last lecture, this assumption is not correct in general. We make this assumption in the
exposition to help you gain intuition.



The conditions required in Brouwer’s theorem are mild. If the unique-best-response assumption
made in were satisfied, and if br;(x_;) were a continuous function of x_;, our task would be
complete already. However, there can be multiple best responses for certain x_;. This is why we need
a generalization of Brouwer’s theorem about set-valued functions or correspondences.

2.2 Kakutani’s Fixed-Point Theorem

Given any set Y, 2V denotes the collection of all subsets of Y, i.e., 2¥ ={Z | Z C Y}. A correspon-
dence is any function of the form ¢ : X — 2 for any non-empty sets X, Y.

Definition 2.3. Let ¢ : X — 2% be a correspondence. A fixed point of ¢ is a point # € X such
that © € p(z).

A generalization of continuity to correspondence is upper hemicontinuity, defined below.

Definition 2.4. A correspondence ¢ : X — 2% is said to be upper hemicontinuous if for any
sequences {x/ 1524 and {7 }524 in X such that

(i) 3/ € p(a7) for any j > 1;
(ii) limj 002/ = 2% € X;
(iil) limjeoy’ = y* € X,

then y* € p(z*).

To earn an intuition of upper hemicontinuity, we first recall the definition of continuity of a function:
f+ X — X is continuous if for any sequence {z7}32; in X which converges to z* € X, then
lim;j 00 f(27) = f(2*). Now we consider the correspondence ¢ : X — 2% defined by p(z) = {f(z)}.
Continuity of f implies upper hemicontinuity of .

Upper hemicontinuity is less restrictive in some sense. Intuitively, it allows the correspondence to
be more “inclusive” at a singular point z*, as the following example demonstrates.

Example 2.5. Consider the normalization function f in R2 defined by f(z,y) =

x y

(W Va2

Let ¢ : R?2 — R? be the correspondence defined as follows. If (x,y) # (0,0), then ¢(z,y) =
{f(z,y)}. When z =y =0, set ¢(0,0) = {(a,b) € R? | a* + b* = 1}, which is more “inclusive”
as the set includes every possible value of f(x,y) where (x,y) is in any small open neighborhood
of (0,0).

It is easy to check that ¢ is upper hemicontinuous. Informally speaking, we may say this more
inclusive correspondence remedies the discontinuity of f.

). This function is well-defined and continuous in R?, except at the origin.

We are now ready to state the Kakutani’s fixed-point theorem.

Theorem 2.6. [Kakutani’s Fixed-Point Theorem] Let X be a compact and convex set in R
Suppose ¢ : X — 2% is an upper hemicontinuous correspondence, and ©(x) is a non-empty and
convex set for all x € X. Then ¢ admits at least one fixed point.




The proofs of Brouwer’s and Kakutani’s theorems are out of the scope of this game theory courseﬂ
In Appendix [A] we will present some counter examples to illuminate why the conditions required in
the two theorems are necessary.

3 Nash’s Proof

To use Kakutani’s theorem for proving Nash’s theorem, we need to construct a correspondence which
satisfies the required conditions, such that any fixed point of the correspondence is a Nash equilibrium.
Clearly, the set of joint mixed strategy profiles, A(A;) x A(Az) x...xA(Ay,), is a compact and convex
set in RY, where d := > | |A;|. Let BR;(x_;) denote the set of best responses to x_;:

BR;(x_;) := argmax u;(y},x_;) = { yi € A(A)) ‘ wi(yi, x—;) = max  u(y,X_;) } .
yQGA(Ai) y;EA(Ai)
Let ¢ be the following correspondence:

o(x1,%2,...,%X,) := BRyp(x-1) X BRa(x-2) x ... X BR,(x_p)

= {(yl,yg,...,yn) ‘Vizlﬂ,...,n, Vi EBRZ-(X,Z-)} ) 2)

Example 3.1. For the two-player Rock-Paper-Scissors game, we give a few examples of BR; (x2).

e If xo =(0,1,0), i.e., player 2 chooses Paper, then the best response of player 1 is to choose
Scissors, i.e., BRi(x2) = {(0,0,1)}.

o If xo = (3,3, 3), then uy(erp, x2) = ui(e1p,x2) = & and uy(e1s,x2) = —5. By Proposition
2.2 in the last lecture, BRi(x2) = {(a,1 —a,0) | 0 <a < 1}.

o If xg = (% + 0, %, % —¢) for a tiny positive J, then uj(e1r,x2) = % — 0, ui(e1p,x2) = é + 20
and uj(e1s,x2) = —% — ¢, and hence BR;(x2) = {(0,1,0)}.
Observe that we only perturb xy slightly, but the set BRj(x2) changes significantly, so
the correspondence BR; does not seem to match with our usual perception of continuity.
However, it is upper hemicontinuous, as guaranteed by Lemma [3.3| below. Note that the set

{(a,1—4a,0) | 0<a<1} does contain (0, 1,0).

We point out two properties of the payoff function w;, which will be used to show that the cor-
respondence ¢ in satisfies all conditions required by Kakutani’s theorem. Recall that u; is an
expectation over a finite space A = A; X As x ... X A,. When we expand u; using the definition of
expectation, we have

n
ui(Xl,XQ,...,Xn) = Z Ui(a17a27"‘7an)'ijyaj :
j=1

(a1,a2,...,an)EA

Thus, w; is continuous in (x1, X, ...,X,). Moreover, we can write u; as

n
Ui(Xl,XQ,...,Xn) = Z Z ui(a17a27~-'7an)'ij,aj 'xi,ai )
7j=1

a;€A; \ (a1,a2,.,0i—1,8i 41,00 )EA_; =1
J#i

which indicates that for any fixed x_;, u; is a linear function of x;, and hence it is concave in x;.

3For Brouwer’s theorem in real spaces, there is a proof via a combinatorial result called Sperner’s lemma, which is
relatively elementary when compared to other existing proofs of the theorem. The proof is available at [I].



Proposition 3.2. For any x € X, ¢(x) is a non-empty and convex set.

Proof Sketch: It suffices to show that BR;(x_;) is a non-empty and convex set for any i, which
is true since BR;(x—;) = argmaxy/ca(a,) wi(¥i;X—i), is the argmax of a continuous and concave
function in the compact domain A(A;). O

Lemma 3.3. The correspondence ¢ in ({2)) is upper hemicontinuous.

Proof: Let X = A(A;) x A(Az2) x ... x A(A,). Let

{X]:(X{aszy"'axzz)}j_l ) {y]:(y{aY%vvy%)}

n
j=1
be any two sequences in X with limits x*,y* € X respectively, and y’/ € ¢(x7) for any j > 1. To
prove the lemma, it suffices to show that y; € BR;(x* ;) for every i.

Suppose the contrary, i.e., there exists ¢ such that y; ¢ BR;(x*;). Then by Proposition there

exists z; € BR;(x* ;) such that wi(zi, x*;) > u;(y’,x* ;). Since the payoff function u; is contlnuous
lim w;(z;, x x! ) = wi(zi,x%;) > wi(y;,x%;) = lim u,(yf,x]_l)
]—}OO J—00

Thus, there exists a sufficiently large j such that uz(zz, ) > uz(yz, ) But since y’ € ¢(x7), we
have y] € BR;(x’ ;) and hence u;(z;,x’ ;) < u; (yz, 7 ), a contradiction. O

To complete the proof of Nash’s theorem, Theorem Proposition and Lemma together
imply that ¢ has a fixed point, say it is (x1,Xs,...,X;,). Directly from the definition of ¢ and BR;,
for each player i, x; maximizes wu;(x;,x_;). Thus, the fixed point is a Nash equilibrium.

4 Discussions on Nash’s Theorem

Observe that Proposition and Lemma are valid as long as for each player 4, (i) u; : X — R is
continuous, and (ii) u;(x;,x_;) is quasi-concave in xiEI Thus, Nash’s theorem is true for games far
beyond normal-form games.

We present a game with no Nash equilibrium below, in which condition (ii) does not hold.

Example 4.1. In a two-player zero-sum game, each player i chooses z; € [0, 1], and uq(x1,x2) =
—ug(x1,x2) = |21 — 22|. Note that u; is not quasi-concave in z1, but ug is quasi-concave in zs.
Suppose the contrary that a Nash equilibrium (z7],x%) exists. Since player 2 wants to minimize
the distance, 35 = x]. But player 1 wants to maximize the distance, so x] # x5, a contradiction.

Since there is no Nash equilibrium, some condition required in Kakutani’s theorem must not
hold; the violated condition is the convexity of ¢(x1,z2). Recall that p(z1,22) = BRi(x2) %
BRa(z1). We compute the two best response correspondences below:

{1}, if x9 < 0.5;
BRl(ZL‘Q) = {0}, if x9 > 0.5; BRQ(:El) = {:El} .
{0,1}, if 29 = 0.5.

Observe that ¢(z1,22) is convex for almost any (x1,x2) € [0, 1] x [0, 1], except when x5 = 0.5.

“Let X be a convex set in R™. A function u; : X — R is quasi-concave on X if for all 2,2’ € X and for all A € [0,1],
we have f(Az + (1 — A\)z’) > min{f(x), f(z')}. It is not hard to see that if u; is concave then u; is quasi-concave, but
not vice versa.



Nash’s theorem applies for finite games. What about infinite games, with either infinitely many
players, or infinitely many actions per player? We present a game with no Nash equilibrium below,
in which there are two players but each player has infinitely many actions.

Example 4.2. In a two-player zero-sum game with A; = As = N, each player i chooses a; € N.
ui(ai,az) = 1if a; = ag, otherwise wuj (a1, az) = 0. Suppose the contrary that a Nash equilibrium
(x7,x3) € A(N) x A(N) exists. Player 2 wants to avoid choosing the same action as player 1. It is
not hard to see that for any xj € A(N), supy,ea) u2(x7, x2) = 0. Thus, uz(x7,x3) = 0. On the
other hand, player 1 wants to match with the action of player 2. Given x5 € A(N), player 1 may
use a pure strategy of choosing an action j* € arg max ey x25. Denote this pure strategy by e;-.
Note that uq(x},x5) > ui(ej«,x35) = x5 > 0. Thus, u1(x],x3) + u2(x7,x3) > 0, a contradiction
to the fact that the game is zero-sum.

In Appendix [B] we will present another game with no Nash equilibrium, in which there are infinitely
many players but each player has only two action.

5 Existence vs. Computation

At the beginning of this note, I wrote “if a solution concept does not exist, it is useless no matter
how naturally motivated it is”. Nash’s theorem guarantees existence of Nash equilibrium, marvelous!
Nevertheless, the usefulness of the solution concept is not imminent yet. Let me modify the quote:

If a solution concept cannot be found efficiently,
it 1is useless even it exists and is naturally motivated.

In computer science language, the above quote can be rephrased as

A solution concept is useful not only because it always exists,
but also because it can be computed by an algorithm efficiently.

Fixed-point theorems are powerful and beautiful mathematical tools, but they have their limitation:
their proofs are typically non-constructive, i.e., they do not shed much insight on where a fixed point
locates. We do need new ideas to compute Nash equilibrium. It turns out that devising (efficient)
algorithms to compute Nash equilibrium, even just for two-player games, is not easy. In the next few
lectures, we focus on two-player games and present algorithms for computing Nash equilibrium.
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A Required Conditions in the Fixed-Point Theorems

SxS f
S ‘ bri(s2) ‘ bra(s;) | compact? ‘ convex? | continuous?
interval [0, 1] g(s2) g(s1) Yes Yes No
{(si1,8:2) ER? | 3 < (s11)% + (si2)? <1} | (—s21,822) | (s11,—512) Yes No Yes
R so+1 s1+1 No Yes Yes

In the table above, we present three two-player games which do not have Nash equilibrium. In
each game, both players have identical strategy spaces, denoted by S. We denote player i’s choice of
strategy by s;. For each player ¢, we specify the unique best response br(ss_;) in the table. Her payoff
function is w;(si, s3—;) = —||s; — br(ss—;)||. Since the best responses are unique, we can consider the

best response function f: S x S — S x S in (1), instead of the correspondence ([2).

We leave to you as an exercise to show that each f has no fixed point in its respective domain
S x S. Thus, in each case, at least one of the following three conditions required in Brouwer’s theorem
is violated: (i) S x S is compact, (ii) S x S is convex, (iii) f is continuous. In each game, exactly one
distinct condition from (i), (ii), (iii) is violated. This demonstrates that each condition is (somewhat)

necessary/[’]

In the first game, the function g is g(s) = (s + 0.1) mod 1. Note that g is not continuous. If you
are not familiar with the “mod” notation, below is a more elementary definition:

t+0.1, if0<t<0.9:
g(t) = .
t—09, if09<t<1.

The conditions required in Kakutani’s theorem (Theorem are similar, but to deal with cor-
respondences it requires one more condition that ¢(z) is a non-empty and convex set for all z € X.
In Example we also demonstrated that the convexity condition is necessary. The non-empty
condition is also necessary: if ¢(z) is the empty set for all + € X, the correspondence is trivially
upper hemicontinuous, but it admits no fixed point.

B A Game with Infinitely Many Players

Here, we present a game with infinitely many players and each player has finitely many actions, and the
game has no Nash equilibrium. The players are indexed by positive integers in N. Each player has two
actions, H (head) and T (tail). For any joint action profile a = {a;};en, let Cr(a) = [{jla; = H}| and
Cr(a) = |{jlaj = T'}|. For any player i, let C};(a) = |{j # ila; = H}| and Cl(a) = |{j # ila; = H}|.
We make the following simple observation.

Observation 1. For any player i, Cy(a) = oo if and only if C% (a) = oo, and Cr(a) = oo if and only
if Ci.(a) = oo.

For each player i, the payoff function u; is defined as follows:

(0, if a; = H, C% = o0, Cr}<oo

1, ifa; =T, C4 = o0, Ck < 00
1, ifa;=H, C4 < o0, Ct =00
0, ifai:T,C}I<oo, Cl = o0
i, ifa; = H, C}{:oo,Ci:oo

0, ifa; =T, C}I:oo, C%:oo

ui(a;,a_;) =

°In Brouwer’s theorem (Theorem [2.2), the condition “X is convex” is not strictly necessary. It can be replaced by
“X is homeomorphic to a closed ball”, or in more layman term, X does not have a hole in the middle.



Suppose the contrary that there exists a Nash equilibrium {x; };en, where x; is the mixed strategy
of player i at the equilibrium. {x;};cn determines a probability measure over {H,T}". Under this
probability measure, let

p = P[Cy =00, Cr < ]
q = P[Cy < oo, Cp =
r = P[Cy =00, Cr =

Note that p + ¢+ r = 1. By Observation 1, u;(H,x_;) = ¢ + ri and u;(T,x_;) = p.

We claim that 7 = 0. Suppose the contrary that » > 0. Then every player 7 with i > 2% must
choose H with probability 1 at the Nash equilibrium, but this implies Cr < oo almost surely, which
forces r = 0, a contradiction.

We need the following well-known lemma in probability theory to proceed.

Lemma B.1. [Second Borel-Cantelli Lemma] Let {E};};cn be a sequence of independent events.
If 3 enP[E;] = oo, then the event that Ej; occurs infinitely often has probability 1.

We claim that either p = 1 or ¢ = 1. Suppose the contrary, i.e., 0 < p,q < 1. By the contrapositive
of the second Borel-Cantelli lemma, » .y 2jn < 0o and ),y 2jr < o0, but this is impossible since
> jen(TjH +xm) =3 081 = o0

If p=1 and ¢ = 0, then at the Nash equilibrium, each player’s best response is to choose 1" with
probability 1. But this implies ¢ = 1, a contradiction.

Analogously, if p = 0 and ¢ = 1, then at the Nash equilibrium, each player’s best response is to
choose H with probability 1. But this implies p = 1, a contradiction.
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