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• Theoretical researcher in

– algorithmic game theory and market theory

very inter-disciplinary

dynamic interactions

in games & markets

ML, AI, optimization,

& dynamical systems⇔
Learning-in-Games
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Part 1
Motivating Examples of

Learning-in-Games



Machine Learning in Games
What is ML?

{xi}Ni=1 ∼ D
or

{(xi, yi)}Ni=1 ∼ D

regression

classification

density estimation

clustering

principal components

training

data

insight

The insight is used to make prediction about the future.



Machine Learning in Games
The insight is used to make prediction about the future,

which is used for decision making.

{xi}Ni=1 ∼ D
or

{(xi, yi)}Ni=1 ∼ D

regression

classification

density estimation

clustering

principal components

training

What if D is consistently affected by

the decisions made using your own

and also other (ML) algorithms?

Machine Learning in Games
(LiG) is a dynamical system!



Feedback Loop of LiG

(ML) algorithm1 next decision1

(ML) algorithm2 next decision2

(ML) algorithmn next decisionn

new data



Example: Recommender System
• Platform:

– input: users’ responses, users’ types

(e.g., watch history, age, gender)

– decision: recommendations of videos (e.g., ranking)

– objective: reach rate / ad revenue / diversity of video types

• Content creators:

– input: users’ responses, revenue history

– decision: types of videos to create

– objective: revenue, attention, (political) influence



Example: Stock Market
• Traders:

– input: stock price data, news

– decision: call/put

– objective: profit

• As more and more big financial companies use algorithmic trading,

regulatory / public / academic want to know:

– Can automatic interactions of (ML) algorithms lead to

financial instability (even if no breaking news)?

– Which (ML) algorithm can lead to higher profit and/or less risk?



Example: Adversarial Learning
• Adversarial Attack [Szegedy et al.; ICLR 2014]

– “While DNN’s expressiveness is the reason they succeed, it also causes them

to learn uninterpretable solutions that have counter-intuitive properties.”

– “DNN learn input-output mappings that are fairly discontinuous... We can

cause it to misclassify an image by applying some inperceptible perturbation.”

– Can be viewed as zero-sum game between learner and adversary.

min
θ

max
ρ1 ,...,ρN
∥ρi∥≤ϵ

L(θ,X,y,ρ) =
N∑
i=1

KL(yi ∥ pθ(xi + ρi))
learner adversary



Example: Adversarial Learning

min
θ

max
ρ1 ,...,ρN
∥ρi∥≤ϵ

L(θ,X,y,ρ) =

N∑
i=1

KL(yi ∥ pθ(xi + ρi))

An effective but less powerful adversary

[Goodfellow et al; ICLR 2015]

min
θ

α · L(θ,X,y,0) + (1− α) · L(θ,X,y,ρ) ,

where ρi = ϵ · sign(∇xiL(θ,X,y,0))

learner adversary



Example: Generative Adversarial Net
• Generative Adversarial Network [Goodfellow et al.; NIPS 2014]

– “A new framework for estimating generative models via an adversarial process

— simultaneously train a generative model G and a discriminative model D.”

– D aims to distinguish training data from generated data.

– G aims to maximize the chance that D making mistake.

– “This framework corresponds to a minimax two-player (zero-sum) game.”

min
G

max
D

Ex∼pdata [logD(x)] + Ez∼pseed [log(1−D(G(z)))]



Part 2
Games & Nash Equilibrium



Games and Markets
• Games and markets are two major systems in economics.

Both involve self-interest agent behaviors.

• Games concern competition (cf. adversary) and cooperation.

– action of each player

– pure/mixed strategy of each player

– payoffs determined by joint actions of all players

• Markets concern resource allocation.

– demand and supply, often balanced via prices



Games
Player 2’s action

R P S

P
la
ye
r
1’
s

ac
ti
on

R (0,0) (-1,1) (1,-1)

P (1,-1) (0,0) (-1,1)

S (-1,1) (1,-1) (0,0)

action: choice a player can make

mixed strategy: a probability distribution that a player uses

to pick action randomly

expected payoff: in RPS, total payoff always zero, so zero-sum game



Games
Game model is flexible/arbitrary.

Player 2’s action

R P S

P
la
ye
r
1’
s

ac
ti
on

R (0,0) (-1,1) (10,-15)

P (1,-1) (0,0) (-1,1)

S (-15,10) (1,-1) (0,0)

Player 2’s action

R P S

P
la
ye
r
1’
s

ac
ti
on

R (0.5,-0.5) (-1,1) (1,-1)

P (1,-1) (0.5,-0.5) (-1,1)

S (-1,1) (1,-1) (0.5,-0.5)



Nash Equilibrium
joint mixed strategy profile: each player chooses one mixed strategy

Nash equilibrium: a profile such that no player can unilaterally

change strategy to obtain better payoff

A joint mixed strategy profile (x1,x2, . . . ,xn) is a Nash equilibrium

if for any mixed strategy x′i of player i,

ui(x
′
i,x−i) ≤ ui(xi,x−i) ;

in other words,

xi ∈ argmax
x′i

ui(x
′
i,x−i) .



Nash Equilibrium
Asymmetric Matching Pennies:

H T

H (1,1) (0,0)

T (0,0) (3,3)

Three Nash Equilibria:

• Both players pick “H”, each payoff is 1.

• Both players pick “T”, each payoff is 3.

• Each player picks “H” with probability 3
4 and “T” with

probability 1
4, each payoff is 3

4.



Psychology(?) of Nash Equilibrium
Parity Cooperation Game:

• n isolated players. Each player’s action is 0 or 1.

• s = sum of actions of all players

• If s is even, each player gets $s.

• If s is odd, each player gets $0.

• There are at least 2n−1 Nash equilibria, with payoffs ranging

from 0 to ∼ n. Which are probable outcomes? We can’t

really tell.



Minimax Theorem
Theorem [John von Neumann; 1928]

For any two-player zero-sum game,

• Nash equilibrium is essentially unique;

• payoff to each player at Nash equilibrium is uniquely

determined.

Proof idea. By the strong duality of linear programs.

Yoav Freund and Robert Schapire [GEB 2003] presented

a surprisingly elementary learning-in-game proof.

minx2 maxx1 x
T
1Ax2 = maxx1 minx2 xT

1Ax2



Minimax Theorem
• In general, a game can admit multiple Nash equilibria (cf.

local minimas of loss function) with vastly different payoffs.

• Minimax Theorem says two-player zero-sum game is

more “predictable”.

• However, learning-in-zero-sum-game is not quite so...



Part 3
Online Learning Algorithms



Online Learning
• Minimax Theorem nails two-player zero-sum games.

• But in reality, games are typically not zero-sum.

• Also, games can be played by players who know neither the

full game nor their oppoents’ moves.

• We use online/adaptive learning algorithm that runs on the

fly relying on partial or local information.



Multiplicative Weights Update
• Suppose we know the payoffs to each action in the history.

• If the past cumulative payoff of an action is much higher

than those of other actions, we should choose this action

more frequently in the future.

1. Set x0i =
1
n for each action i = 1, 2, . . . , n.

2. for t = 1, 2, . . . , T do:

• Choose an action j with probability xt−1j .

• Observe payoffs pti for each action i = 1, 2, . . . , n.

• Set xti ∝ xt−1i · exp(ϵpti) for each action i = 1, 2, . . . , n.



Multiplicative Weights Update
MWU enjoys no-regret property for any payoffs.

Theorem. If the payoffs in each round are between 0 and 1,

by choosing the step-size ϵ =
√

log n
T , we have

(average payoff received in the T rounds)

≥ (average payoff received in the T rounds

if sticking with the best action) − 2

√
log n

T
.

tends to 0 if T →∞



Multiplicative Weights Update
Corollary. [Freund, Schapire; 2003] Minimax Theorem holds.

Proof idea. In a two-player zero-sum game, consider

• Player 1 uses MWU;

• Player 2 is an almighty adversary — always chooses the worst

payoff for Player 1 in each round.

Then by the no-regret theorem and the weak duality (whose proofs

are elementary), we can prove the equality

minx2 maxx1 xT
1Ax2 = maxx1 minx2 xT

1Ax2

in a few lines of calculations.



Optimistic MWU
1. Set x0i =

1
n for each action i = 1, 2, . . . , n.

2. for t = 1, 2, . . . , T do:

• Choose an action j with probability xt−1j .

• Observe payoffs pti for each action i = 1, 2, . . . , n.

• Set xti ∝ xt−1i · exp(ϵpti) for each action i = 1, 2, . . . , n.

ϵ(pti+ϵ(pti−pt−1i ))

momentum



Multiplicative Weights Update
Version 1:

1. Set x0i =
1
n for each action i = 1, 2, . . . , n.

2. for t = 1, 2, . . . , T do:

• Choose an action j with probability xt−1j .

• Observe payoffs pti for each action i = 1, 2, . . . , n.

• Set xti ∝ xt−1i · exp(ϵpti) for each action i = 1, 2, . . . , n.

Version 2, the same algorithm but different implementation:

1. Set W 0
i = 0 for each action i = 1, 2, . . . , n.

2. for t = 1, 2, . . . , T do:

• Choose an action j with probability ∝ exp(ϵW t−1
i ).

• Observe payoffs pti for each action i = 1, 2, . . . , n.

• Set W t
i = W t−1

i + pti for each action i = 1, 2, . . . , n.



Follow-the-Regularized-Leader
• W t−1

i = cumulative payoff of action i up to time t− 1

• FTRL:

xt = argmax
x∈∆n

n∑
j=1

xjW
t−1
j − 1

ϵ
· Breg(un,x)

exploitation:

encourages x be

closer to best action

exploration: (Breg ≈ norm)

un is uniform

encourages x be closer to un

• MWU is a special case of FTRL, by setting the Bregman

divergence to be the KL divergence.

• FTRL also enjoys no-regret property.



Replicator Dynamics and MWU
In evolutionary game theory, competition between species / animals are

often modeled as replicator dynamic below, where xi is population ratio

of species i:
dxi
dt

= xi

(
fi(x)−

∑
j

xjfj(x)
)
,

where fj(x) is the fitness of species j when population composition is x.

Proposition. The above replicator dynamic is equivalent to

dWi

dt
= fi(x) , where xj =

exp(Wj)∑
k exp(Wk)

.

Corollary. MWU is the forward Euler discretization of the above

dynamical system, by viewing fi(x) as payoff to action i.



Replicator Dynamics and MWU
Proposition. The replicator dynamic is equivalent to

dWi

dt
= fi(x) , where xj =

exp(Wj)∑
k exp(Wk)

.

Proof. Let S :=
∑

k exp(Wk). By the chain rule,

dxi
dt

=
exp(Wi)

S
· dWi

dt
− exp(Wi)

S2
·
∑
k

exp(Wk) ·
dWk

dt

= xi · fi(x)− xi
∑
k

xk · fk(x)

= xi

[
fi(x)−

∑
k

xkfk(x)

]



Replicator Dynamics and MWU
Corollary. MWU is the forward Euler discretization of an

equivalent version of replicator dynamic (RD).

Due to the above corollary, it seems natural to analyze

MWU-learning-in-game systems by analyzing its

RD-learning-in-game analogues.

This does provide some insight, but they can have very

different qualitative behaviors (almost-recurrence vs. chaos)...



Part 4
Result Highlights via
Dynamical Systems
& Optimization



Part 4(a)
MWU in Zero-Sum Games



MWU in Zero-Sum Game
• MWU is a natural an popular online learning algorithm.

• Minimax Theorem nails two-person zero-sum game.

• By using the no-regret property of MWU, we have

time-average convergence to Nash equilibrium

[Freund, Schapire; GEB 2003]:∥∥∥∥∥ 1

T

T∑
t=1

xt
i − x∗i

∥∥∥∥∥ ≤ O( 1√
T

)



MWU in Zero-Sum Game
But what about the original time series?



MWU in Zero-Sum Game
But what if the starting point perturbs slightly?



MWU in Zero-Sum Game
• It seems there is no regular pattern, and even somewhat

chaotic.

• Lyapunov chaos (aka butterfly effect) means if a system is

initiated with a slightly different state, the trajectories can be

very different in the long-term.

In other words, the system becomes hard to predict in the

long run.



W 0
A

W 0
B

This perturbation can occur

due to many reasons, e.g.,

round-off errors in computer,

or measurement errors of

payoffs.

Lyapunov Exponent (informal definition): a

lower bound on the maximum possible value of

1

t
· log d(W

t
A,W

t
B)

d(W 0
A,W

0
B)

.

Intuitively, it measures how fast a small

difference in the initial condition leads to

exponential growth in distance.

W t
B

W t
A

Lyapunov Chaos



Theorem. [C., Piliouras; COLT 2019]

MWU learning in almost any two-person zero-sum game is globally

Lyapunov chaotic in the cumulative payoff space (W -space), with

Lyapunov exponent Ω(ϵ2), until the trajectory reaches certain

“trivial subspace”.

Lyapunov Chaos of MWU in Zero-Sum Games

Generalizations:

• FTRL [COLT 2019]

• Graphical constant-sum game [COLT 2019]

• Optimistic MWU in coordination game [C., Piliouras; NeurIPS 2020]

• Direct sum of “strong” zero-sum and “weak” coordination games [C., Tao; ICLR 2021]

• Certain population evolution games [C., Piliouras, Tao; ICLR 2022]



Volume Analysis



Volume (in 2D, area) expansion of MWU learning

in Matching Pennies game (which is zero-sum).

Volume Analysis



Volume Analysis
• Intuitively, when the volume expands exponentially, the

diameter also expands at least exponentially.

• For an update rule of the form

qt ← qt−1 + ϵ · F (qt−1),

where F : Rd → Rd is a smooth function. If S is injectively evolved to

S ′ in one time step, then by integration by substitution,

volume(S ′) =

∫
s∈S

det(I + ϵ · J(s)) dV

where J(s) is the Jacobian matrix of F at s: Jij(s) = ∂Fi
∂sj

(s).

This integrand decides

whether the volume

increases or decreases.



Part 4(b)
Mirror Descent-Ascent in

Convex-Concave
Zero-Sum Games



Zero-Sum Game and Minimax
• Two-player zero-sum game can be reformulated as a

minimax problem:

min
θ1

max
θ2
L(θ1,θ2)

• This general form includes the adversarial learning framework

GAN.

• Wishful thinking: descent on θ1 and ascent on θ2, hopefully

this process converges to equilibrium.



Zero-Sum Game and Minimax
min
θ1

max
θ2
L(θ1,θ2)

But not that simple in reality...

• Existence of equilibrium?

– The domains of θ1,θ2 may not be compact.

– If L has no global convex-concave structure, convexity of best

response correspondence does not hold in general.

– John Nash’s proof on existence of game equilibrium does not work.

• Counter example even on the “simplest” zero-sum games

– MWU in normal-form zero-sum game ≡ mirror descent-ascent on

L(θ1,θ2) = θT
1Aθ2, but we have seen that this is chaotic.



Zero-Sum Game and Minimax
(Personal opinion) Not too much hope to establish general and global

theoretical results. (Hope someone proves me wrong!)

(Un)fortunately, GAN framework seem working well in practice.

Okay, at least we attempted (unintentionally).

Theorem. [C., Cole, Tao; EC 2018]

If L is (σ1, σ2, L1, L2)-strongly Bregman convex-concave, the

standard mirror descent-ascent update rule w.r.t. the corresponding

Bregman divergence converges to a saddle point (equilibrium),

with a linear convergence rate.



Zero-Sum Game and Minimax
Theorem. [Daskalakis, Panageas; ITCS 2019]

When L(θ1,θ2) = θT
1Aθ2, under mild conditions on A, optimistic

MWU with a sufficiently small step-size converges to equilibrium.

A non-exhaustive list of interesting relevant work:

• Daskalakis, Panageas, “The Limit Points of (Optimistic) Gradient Descent in

Min-Max Optimization”, NeurIPS 2018.

• Wang, Zhang, Ba, “On Solving Minimax Optimization Locally”, ICLR 2019.

• Daskalakis, Skoulakis, Zampetakis, “The Complexity of Constrained Min-Max

Optimization”, STOC 2021.

• Daskalakis, Golowich, Skoulakis, Zampetakis, “Guaranteed Convergence to Local

Minimax Equilibrium in Nonconvex-Nonconcave Games”, COLT 2023.



Summary & Remarks



• Learning-in-Games (LiG) finds many nautural applications

in modern (internet) economics.

• The natural association between zero-sum games & minimax

optimization is of particular ML (adversary learning) interest.

• Theoretical results are somewhat delicate, depending on the

combinations of games and learning algorithms.

• Mathematical insight from both Optimization Theory and

Dynamical Systems is necessary for thorough understanding.

Summary and Remarks


